蒋多多| 科普 从猴子到人,人类依靠算法演化出“通用人工智能”-网易有料
蒋多多
A部分
一
这个世界上有时间旅行者吗?
霍金为此在2009年做过一个实验:专门为时间旅行者举办了一场派对。
实验的亮点是:为确保参加者真的是穿越而来,而非普通人前来冒充,霍金在派对结束后才向时间旅行者发出请柬。请柬上注明了具体的时间和地址。
遗憾的是,并没有时间旅行者出现在霍金的派对上。这似乎意味着时间旅行是不可能的。
说的好像时间旅行者很闲似的。又或者,时间旅行者是不自知的。又又或者,已经来过了,这就是他们恶作剧后的结果。
时间不可逆,可能是宇宙最奇妙的秩序之一。时间之不可逆流而上,凸显了其它所有可能的逆流而上的价值和意义。
上帝不会安排每个人的命运,祂只是设计了基本的算法。
时间均匀、单向地流淌,是这个算法不多的“第一性”设定。就像围棋的“气尽棋亡,隔手提劫”。“第一性”设定越简洁,棋局的变化越丰富。所以围棋比“第一性设定”更多的象棋复杂很多很多倍。
复杂即不确定性。
这就是人世之不确定性的原因。
人生观的界限之一是:你因不确定性而生的快乐,和你因不确定性而生的痛苦,孰大孰小?
然而,痛苦和快乐,并非“第一性”,最初的算法,未曾对其作出定义。
否则人类就会失去最重要的禀赋:自由意志。
所以,时间穿越者,要么因为获得旅行的权力,放弃自由意志;要么对上帝撒娇说:我两个都想要。
于是上帝可能设置一个类似于围棋里打劫的“第一性”,气虽尽,犹可循环。
作为条件,为了保持“自由意志”~假如自由意志并不是一个幻觉,时间旅行者会被从记忆里拿掉他重复过的那一段岁月。
那么时间旅行者的穿梭,又有何意义呢?
也许你我都是那个不自知的时间旅行者。
在上帝的算法里,我们的躯壳,盛放着我们的大脑,运行着我们的意识,被驱使于自由意志的那些并不自由的快乐、忧愁。
二
你是你自己的主人吗?
莎士比亚说:
“我们的身体就象一座园圃,我们的意志是这园圃里的园丁;
不论我们插荨麻、种莴苣、载下牛膝草、拔起百里香,或者单独培植一种草木,或者把全园种得万卉纷披,让它荒废不治也好,把它辛勤耕垦也好,那权力都在于我们的意志。”
在进入成人世界之前,“控制论”似乎是可行的。我们玩儿球,看物体按照牛顿力学精确计算出的抛物线飞行;我们学骑车,享受着惯性的乐趣。因为地球的转动,四季更迭。年少的我们对未来充满期待,而内心底,则坚信世界犹如钟表般牢靠。
假如人也是原子构成,并处于物理世界中,那么,我们的大脑是否就遵循着物理定律呢?
斯宾诺莎是一名一元论者或泛神论者。他认为宇宙间只有一种实体,即作为整体的宇宙本身,而上帝和宇宙就是一回事。他的这个结论是基于一组定义和公理,通过逻辑推理得来的。
斯宾诺莎的上帝不仅仅包括了物质世界,还包括了精神世界。他认为人的智慧是上帝智慧的组成部分。
斯宾诺莎还认为上帝是每件事的“内在因”,上帝通过自然法则来主宰世界,所以物质世界中发生的每一件事都有其必然性;世界上只有上帝是拥有完全自由的,而人虽可以试图去除外在的束缚,却永远无法获得自由意志。
关于决定论,法国数学家皮埃尔·西蒙·德·拉普拉斯写道:
我们可能将宇宙的现在状态视为其过去的结果和其未来的原因。
如果一位智者在某个特定时刻知道使自然处于运动的所有力以及知道构成自然的所有成分的位置,并且如果他还有足够的能力分析这些数据,那么他能将宇宙中的最大物体和最小原子的运动纳入一个单一的公式中;
对于这样一位智者,没有什么是不确定的,而未来就像过去一样呈现在他的眼前。
这位智者,就是著名的“拉普拉斯妖”。
“宇宙钟表论”认为,世界具有确定性、且可被数学方程式精确计算。只要知道某个物理世界的初始数值,我们就可以算出后面发生的一切。所以,从科学的角度看,宇宙中不存在不确定性,一切皆可预知。
十九世纪末,“上发条的世界”,被研究“三体问题”庞加莱叩出一个缝隙。他发现了混沌系统:
这是一种确定的但不可预测的运动状态。它的外在表现和纯粹的随机运动很相似,即都不可预测。
但和随机运动不同的是,混沌运动在动力学上是确定的,它的不可预测性是来源于运动的不稳定性。或者说混沌系统对无限小的初值变动和微扰也具有敏感性,无论多小的扰动在长时间以后,也会使系统彻底偏离原来的演化方向。
混沌现象是自然界中的普遍现象,天气变化就是一个典型的混沌运动。混沌现象的一个著名表述就是蝴蝶效应:南美洲一只蝴蝶扇一扇翅膀,就可能会在佛罗里达引起一场飓风。
混沌系统经常是自反馈系统,出来的东西会回去经过变换再出来,循环往复,没完没了,任何初始值的微小差别都会按指数放大,因此导致系统内在地不可长期预测。
奥尔松举了二战时候的例子,他认为顽强的丘吉尔也许就是一只蝴蝶。
进入20世纪,量子机制取代了牛顿的物质观。原子和分子层面的不确定性,尽管如此难以被直观体验,仍然被加速般进入到我们的现实世界中来。
宇宙开始不确定起来了,充满了随机和偶然。那个理性化的、符合物理定律的稳定世界,于动荡演变的真实世界并不相符。《深层学习》写到:
复杂系统的变革给我们的启示是:我们生活在复杂的、不可预料的、不可简单化的混乱系统之中。
这一观点不仅适用于我们的自然界,也适用于社会环境。火灾和战争,地震和市场崩溃,全球变暖和国际贸易,事物间的关系远比简单的类比复杂得多。我们所在的系统永远以新颖的方式发生着变化。阳光之下,并无旧事。
进而,量子物理被引入人的大脑。
一群物理学家和心理学家开始用量子概率原理来研究人类的认知和决策行为,开创了“量子认知科学”:
正如微观粒子的行为是概率性的、不确定性的,人的认知和决策行为亦然。正如微观粒子的行为极易被情境影响,人的认知和决策行为亦然。
有人让爱因斯坦用不超过 50 个字来回答关于上帝的问题,而他只用了 32 个:
我信仰斯宾诺莎的上帝,他以万物之秩序示现,不会干涉人的命运和行为。
我倒不认为爱因斯坦支持“决定论”。他曾经说过:我想知道上帝的构思;其他的都只是细节。“万物之秩序”,不正是造物主的“算法”吗?
三
谁在控制你的意识?
上世纪的70-80年代,科学家们开始关注“复杂系统”,“涌现”则是复杂系统中最显著也是最重要的一种特征。涌现(Emergence),字面翻译为突然出现,在系统科学中它意味着“整体大于部分之和”。
任何系统都是由大量微观元素构成的整体,这些微观个体之间会发生局部的相互作用,然而当我们把这些个体看作一个整体的时候,就会有一些全新的属性、规律或模式自发地冒出来,这种现象就称为涌现。
Jeffrey Goldstein则对涌现作以下定义:
复杂系统中在自我组织的过程中,所产生的各种新奇且清晰的结构、图案、和特性。
例如:每只小小的蚂蚁是一个非常简单的个体,它们没有聪明的头脑,只会完成一些简单的任务。然而,当把成千上万只小蚂蚁组合到一起的时候,整个蚁群就能体现出非常复杂、庞大的涌现现象,例如社会分工、集体协作等等。
人类的大脑是另外一个蕴含“涌现”理论的令人震惊的例子。
组成人类基因组的 2万个不同基因中,大约有 1 / 3出现在大脑中,并且掌管着数百亿个神经细胞的生死。每一个神经细胞尽管相对复杂,但自身没有意识,或者说不够聪明。
然而,当这些神经细胞相互连接时,便会形成一个令人惊讶的网络,该网络不仅比神经细胞总和更强大,而且能够意识到自己在思考。
尽管人们热烈讨论的话题仍然是 “大脑真正的工作机理 ” ,但很明显,以正确的方式将不太复杂的部分相互连成网络,便可以涌现思考和意识。
库兹韦尔的立场是:
如果生物体在做出情绪反应时完全令人信服,对于这些非生物体,我会接受它们是有意识的人,我预测这个社会也会达成共识,接受它们。
请注意,这个定义超越可以通过图灵测试实体的范围——因为图灵测试至少需要掌握人的语言。
但只要非生物体足够像人,我会接纳它们,我相信,社会中的大部分人也会如此,不过,我也会把那些具有人类一样的情感反应却不能通过图灵测试的实体包括进来,例如,孩子们。
在库兹韦尔看来,如果你接受这样一种信仰飞跃,即非生物体就其感受性所作出的反应是有意识的,那么这也就意味着:
意识是实体整体表现出来的涌现特性,而不是由其运行机制产生的。
简而言之,他选择“相信”。
假如意识是“涌现计算”的结果,它又是如何被感知的呢?那些不可测的意识,是如何被穿起来,仿佛一个连贯(尽管经常不如意)的剧情,从而塑造了“我”?
大脑基于非常古老的设计,虽然其微观性和复杂性,成年人的大脑有1000亿个神经元。在历史进化的过程中,大脑的设计是低效而怪异的。但我们如何完成超级电脑都手足无措的任务?
《进化的大脑》说:单个神经元都是极其缓慢、不可靠且低效率的处理器。但是,大脑是一万亿个非最优处理器的聚合体,大量互联形成500万亿个突触。
因此,大脑可以利用大量神经元的同步加工以及随后的整合模式来解决复杂问题。大脑就是一台拼装电脑,尽管每一个处理器的功能极有限,但大量相互关联的处理器则效率惊人。
这就是大脑,它使用大量相互关联的平行构造,加上精细的反馈信息,就把简陋的部件组成了一个令人惊叹的装置。
大脑都不是设计完美的,它只是胡乱堆积在一起的一团东西。我们的情感、感知和行为的独特性,很大程度是因为大脑并非一台优化的通用解题机,而是寻求特定解的一团怪异聚结物。
心智和意识,是我们存在的根本,也是这个世界最大的难解之谜之一。我们很难从主观体验的角度去研究。
哲学家大卫·查默斯说:“我们用物理解释化学,用化学解释生物,用生物解释心理(也许要在前面加上:用数学解释物理)。但如何解释意识呢?”
让我们暂时放下对“我是谁”的纠缠,回到物理世界。
史蒂芬.平克这样定义:
心智是由自然选择设计来解决我们的进化祖先在他们原始觅食方式的生活中所面临的问题的一套计算器官系统 。
他认为:心智是我们祖先在解决生存问题的进程中 “自然选择 ”出来的 。心智不是大脑 ,而是大脑所做的事情 。人是心智进化的产物 ,而不是剃光了毛的 “裸猿 ” 。心智进化的最终目的是为了复制最大数量的基因 ,而正是基因创造了心智 。
达尔文指出 , “那些令人叹为观止 、极度完美而精妙的器官 ”不是源于上帝的远见 ,而是由复制器经过极其漫长的时间进化而来的 。
在复制器的复制过程中 ,有时会出现随机的复制错误 ,而那些恰好能提高复制器的幸存率与繁殖率的复制错误逐渐一代一代地积累下来 。植物与动物是复制器 ,它们复杂的结构因而看上去就像是被专门设计的 ,使其得以生存和繁衍 。
然而,上帝真的需要亲自参与设计完美而精妙的器官吗?不,祂只需要设计一套算法。
进化论是一种算法。维多利亚时期的计算机先驱人物,查尔斯·巴贝奇的观点是,上帝创造的不是物种,而是创造物种的算法。
2017年,AlphaGo团队推出AlphaGo Zero,此版本不依靠人类玩家的数据创建,且比之前的所有版本都要强大。通过自我对弈,AlphaGo Zero在三天内以100比0的战绩战胜了AlphaGo Lee,花了21天达到AlphaGo Master的水平,用40天超越了所有旧版本。
DeepMindCEO杰米斯·哈萨比斯说,AlphaGo Zero“不再受限于人类认知”,很强大。由于专家数据“经常很贵、不可靠或是无法取得”,不借助人类专家的数据集训练人工智能,对于人工智能开发超人技能具有重大意义,因为这样的AI不是学习人,是通过对自我的反思和独有的创造力直接超越人类。
确切说,AlphaGo Zero也并非完全从零开始。DeepMind 的联合创始人Mustafa Suleyman 被问到Alpha zero 的强化学习是否真的证明可以不要训练数据?他说还是有三个前提:可预测环境(围棋规则)清晰奖励系统(输赢),无变数(variability)。
AlphaGo Zero对我的震撼,远不如最初战胜樊麾的那个初级版本。知道其原理后,你会明白,人类有史以来的棋谱毕竟是有限的,AlphaGo Zero更为高效的“自我学习”在想象之中。
震撼我的,是AlphaGo Zero从零开始发现的围棋招法,很多是与人类一样的。我不由得感慨人类的孤独与伟大。围棋有着超过宇宙间所有原子数量的变化,人类从头开始慢慢摸索,历经漫长的黑暗岁月,代代相传,竟能走得和阿尔法元一样对。
如果AlphaGo Zero是一套算法,人类会不会也是一套算法呢?
DeepMind追求的是“通用人工智能”,而非只擅长下围棋的AlphaGo。此路漫漫。
而人类是如何在亿万年间,逐步演化出自己的“通用人工智能”的?
四
什么是算法?
阿尔伯特·爱因斯坦说:所有科学中最重大的目标就是,从最少数量的假设和公理出发,用逻辑演绎推理的方法解释最大量的经验事实。
算法就是一系列指令,告诉计算机该做什么。计算机是由几十亿个微小开关(称为晶体管)组成的,而算法能在一秒内打开并关闭这些开关几十亿次。最简单的算法是触动开关。
athy O'Neil则说:算法是嵌入在代码中的观点。
机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。机器学习是人工智能的一个分支。人工智能的研究是从以“推理”为重点到以“知识”为重点,再到以“学习”为重点,一条自然、清晰的脉络。
《终极算法》一书对比了普通算法和机器学习:
每个算法都会有输入和输出:数据输入计算机,算法会利用数据完成接下来的事,然后结果就出来了。机器学习则颠倒了这个顺序:输入数据和想要的结果,输出的则是算法,即把数据转换成结果的算法。学习算法能够制作其他算法。通过机器学习,计算机就会自己编写程序,就用不到我们了。
因为,计算机科学通常需要的是准确思维,但机器学习需要的是统计思维。例如,如果有条规定是“垃圾邮件标记的正确率是 99%”,这并不意味存在缺陷,而可能意味这是你的最好水平,已经很好用了。
这种思维上的差别很大程度上也解释了为什么微软能赶上网景公司,但想赶上谷歌却困难得多。说到底,浏览器只是一个标准的软件,而搜索引擎则需要不同的思维模式。
作者说机器学习是“打了类固醇”的科学方法,也遵循同样的过程:产生假设、验证、放弃或完善。
科学家可能会花费毕生精力来提出或验证几百个假设,而机器学习系统却能在一秒钟内做完这些事。机器学习使科学的发现过程自动化。因此,并不奇怪,这既是商业领域的革命,也是科学领域的革命。
人脑和电脑,已经不是一种简单的譬喻关系。人的大脑内部,以及人类社会,似乎正是以类似于“机器学习”的方式运行着。或者,应该反过来说,机器学习可以模仿人类大脑和人类社会。
在《人工科学》一书中,人工智能先驱人物、诺贝尔奖得主赫伯特·西蒙让我们想象蚂蚁费力地穿过沙滩回家。
蚂蚁的路线非常复杂,这不是因为蚂蚁本身复杂,而是因为沙滩这个环境对蚂蚁来说意味着要爬很多山丘,绕很多卵石。如果我们通过对每条可能的路线进行编程,模仿蚂蚁,那么我们注定会失败。同样,在机器学习中,复杂性存在于数据中。终极算法需要做的就是消化复杂性,
因此,如果终极算法变得非常简单,那么我们也不用感到惊讶。虽然人类的手很简单(四个手指,一个大拇指),但是它却可以制作并使用无数种工具。
我们再次看到科学家拿蚂蚁说事儿。也许我们大脑中单个看起来并不复杂的神经元,就是一只只蚂蚁。一千亿个神经元,构成了一个蚂蚁超级社会。
两位斯坦福大学教授最近合作研究蚂蚁如何寻找食物,其中一位是计算机科学家,另外一位是生物学家。
他们发现,蚁群其实早于人类数百万年便发明了传输控制协议/互联网协议(T C P / I P),而这是信息在互联网上传输的核心方法。
如前所述,每只小小的蚂蚁是一个非常简单的个体,它们没有聪明的头脑,只会完成一些简单的任务。然而,当把成千上万只小蚂蚁组合到一起的时候,整个蚁群就能体现出非常复杂、庞大的涌现现象,例如社会分工、集体协作等等。
神经元似乎也是如此工作。
让我们跳出来,回到本文的标题:什么是人生算法?
假如上帝是以算法来构建这个世界,我们也该找到自己的人生算法。
至此,让我们总结一下上述段落的观点,并以此作为后面文字的基石:
1、我们所在的世界,看起来是一个“一切不可改变的”钟表宇宙,其实是一个“一切不可预测”的混沌宇宙;
2、我们努力去控制,无论是控制自己的大脑,还是控制外部事物,经常是徒劳的。结果其实是“涌现”出来的;
3、“自动学习”,是一个智能体自我进化的本质,即“算法”。